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Abstract

Bright field cellular microscopy offers an image capturing method that is both non-

invasive and simple to implement. However, the resulting micrographs pose chal-

lenges for image segmentation which are compounded when the subject cells are

tightly clustered or overlapping. Filamentous cyanobacteria are a type of organism

that grow as linearly arranged cells forming chain-like filaments. Existing methods

for bright field cell segmentation perform poorly on micrographs of these bacteria,

and are incapable of identifying the filaments. Existing filament tracking methods

are rudimentary, and cannot reliably account for overlapping or parallel touching

filaments. We propose a new approach for identifying filaments in bright field micro-

graphs by combining information about both filaments and cells. This information is

used by an evolutionary strategy to iteratively construct a continuous spline represen-

tation that tracks the medial line of the filaments. We demonstrate that overlapping

and parallel touching filaments are handled appropriately in many difficult cases.

viii
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Chapter 1

Introduction

The processing of images produced by optical microscopy is an active subfield of digi-

tal image processing. We wish to process images of cells, nuclei, or other microscopic

organisms and extract relevant information. Common goals include counting cells,

calculating physical characteristics, distinguishing between cell types, and tracking

cell lineages across multiple sequential images. These all require some form of image

segmentation, either as a precursor to image analysis or as an integral component. In

general, image segmentation attempts to divide an image into regions where objects

of interest are distinguished from irrelevant objects or the image background. In

the context of microscopy images then, the task of image segmentation will typically

involve

• separating regions of interest (ROI) from the background,

• identifying cell centres or nuclei,

• highlighting cell membranes,

• identifying separate cell areas (their nucleus and cytoplasm),

or some combination of the above.

An image processing system may be fully automated or semi-automated. An au-

tomated system only requires valid input from a human operator, and thereafter

operates independently until producing its output. A semi-automated system is one

which is human-assisted; it requires periodic input from an expert or operator, usu-

ally in the form of feedback on intermediate results. Fully automatic solutions are

increasingly popular where the capacity for generating useful images far exceeds the

capacity for analyzing and reporting data from these images, particularly in high-

throughput situations [5]. For a human operator, the process of image analysis can

1
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be tedious and repetitive, while an automatic system frees the operator for other

tasks and is not prone to errors from fatigue. An operator-free approach presents a

repeatable process, removing human subjectivity and providing reproducible results

which can themselves be analyzed and compared reliably to alternative methods

[38]. Automated processes also have the potential to be more sensitive to detail than

human interpreters. Semi-automatic tools remain important where human decision-

making is still desired.

1.1 Microscope image processing

Microscopy allows us to view otherwise unapproachable detail in magnified samples,

but introduces problems beyond those of an ordinary photographic image. Biologi-

cal samples are prepared by an operator and illuminated, and the magnified results

are sampled as a digital image called a micrograph. New image capturing technology

such as 3D and time-lapse imaging has allowed the creation of huge amounts of image

data that has in turn spawned a wide variety of image processing methods and tools

[49, 40]. There are numerous methods for illuminating and capturing these images,

two of which are bright field and fluorescene microscopy, discussed below. A general

overview of the methods of microscope image processing is presented in [61].

1.1.1 Bright field microscopy

Bright field microscopy refers to one of the simplest procedures for capturing an im-

age: a biological sample is illuminated from below and light passes through. As the

sample partially absorbs the light, the received image is one of a dark object on a

bright grey or white background. Although the process for image capture is straight-

forward, processing bright field microscopy images poses a unique set of challenges.

Cells often appear with missing edges or edges with low contrast compared to

the background intensity level. A cell’s interior may contain pixels of widely varying

intensity, often above the maximum (or below the minimum) intensity values outside
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Figure 1.1: Two bright field micrographs displayed in grayscale containing filamen-
tous cyanobacteria. The bacteria are dark objects on a bright background. Notice
the uneven illumination levels, intermittent bright halos at the edges of filaments, and
inconsistent intensity levels within individual cells. Image data provided courtesy of
James W Golden, University of California, San Diego2.

the cell, but sometimes containing regions with intensities similar to the image back-

ground. Due to the diffusion and reflection of light interacting with the cells, they

are sometimes surrounded by a bright “halo”, a dark outline, or both [25]. The halos

in an image may in fact be more intense or salient than the cells themselves [56],

and the cytoplasm of neighbouring cells may overlap and cause the cells to become

occluded [6].

1.1.2 Fluorescence microscopy

Fluorescence microscopy requires that a sample be partially highlighted with fluores-

cent stains, or specially bred to genetically express fluorescent proteins for live-cell

imagery. This is an extra step in preparation for an operator, and increases the dif-

ficulty of imaging live samples. The benefits are tangible however; captured images

will typically have high contrast between regions of interest and the non-fluorescent

background, with well-defined edges and contours for objects on the cellular scale [61].

2Images identified as “TL-4-13-03-adj-2” and “TL-4-6-02-adj-2”
http://biology.ucsd.edu/faculty/goldenj.html
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1.2 Filamentous cyanobacteria

Analysis of certain filamentous cyanobacteria is motivated by their early contribu-

tions to the evolution of life through photosynthesis [18], and more practically by

their toxic impact on drinking water [16]. From an image analysis standpoint, this

type of bacteria poses interesting challenges and opportunities for segmentation. To

begin with, the growth of individual cells is strictly limited to growing in filaments

or strands, with each oblong, elliptical cell joined to a cell before and after it in the

approximate direction of its medial axis. Figure 1.1 shows two images of filamentous

cyanobacteria, with the strands of cell filaments clearly visible.

Once a portion of an image’s cells have been correctly identified, this significantly

limits the areas which need to be searched for new cells, and also restricts the options

for their local orientation. The filaments themselves may be of just as much inter-

est as the individual cells, so identifying the shape and location of these filaments

is another goal of image segmentation. This poses an extra challenge to any seg-

mentation process, particularly if the sample contains multiple filaments which may

overlap, lie parallel to, and partially occlude one another. In these environments it

may be relatively simple to reliably identify most cells in a cluster, but identifying

tightly packed filaments can be challenging even for a human interpreter.

Efforts at identifying samples of filamentous cyanobacteria have been limited,

and automated solutions have thus far been restricted to filament segmentation in

samples with few touching or overlapping filaments [66]. Images captured using

brightfield microscopy have been analyzed using semi-automated processes [2], [1] to

collect rudimentary statistics, such as cumulative and individual filament lengths. In

the case of [1], very little human input was required; however, the sample input was

restricted to cases with very sparse filaments, and without overlapping or parallel

filaments at all.

Images captured using fluorescence microscopy were analyzed in [66], which de-

fined the notion of a “fixel” (a portmanteau of “filament” and “pixel”) to be a
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(a) (b)

Figure 1.2: A large fluorescence micrograph containing numerous filaments (a),
and a zoomed region of the image displaying the maximum level of detail (b).
Images are part of the validation set for Planktothrix rubescens available from
http://www.technobiology.ch/ as a public download.

fundamental object of which filaments are built. Input images were scanned for ar-

eas matching the fixel model, and matching fixels were chained together using local

distance and orientation measures. The authors claim their approach accounts for

parallel and overlapping filaments, yet their segmentation results demonstrated that

significant progress remains to be made: of their sample data, only 86% and 55% of

the overlapping and parallel filaments (respectively) were correctly identified. Fur-

ther, this approach assumes fluorescence micrographs with well-defined edges and a

high contrast ratio between foreground and background objects. Figure 1.2 shows

sample images used in this process.

Across all of this work, the general problem of overlapping and touching parallel

filaments remains unsolved. Lone filaments may be identified, but not when they

are tightly clustered with other filaments. This is a common scenario in time-lapse

imaging, where filaments may start out evenly separated but grow and move over

time so that the filaments become entangled and closely bunched in the later images.

In such a crowded image, segmentation methods for individual filaments that cannot

account for overlapping and touching filaments will not succeed, so an alternative

approach is required.
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Our contribution consists of a first step toward automatic segmentation of cells

in filamentous organisms. We propose an algorithm that is able to reliably segment

filaments in crowded bright field images, and correctly distinguishes between over-

lapping and touching filaments. Problems with bright field imaging are overcome by

combining indicators for both cells and filaments. This mutually supporting informa-

tion allows segmentation to proceed even when one indicator is unreliable or missing.

Automatically determining the size, shape, and location of each cell is seen as a

future goal. Automating the full process of segmentation will increase how quickly

large data sets can be analyzed and removes the element of human error. Instead

of manually identifying individual cells and their respective filaments as a precursor

to biological experimentation or analysis, an automatic process will free human op-

erators for other tasks and potentially make more data available to researchers. In

particular, our algorithm forms the basis for an approach to identifying cells and fil-

aments in time-lapse videos, where the amount of data often exceeds the capabilities

of humans to process.

The remainder of this thesis is organized as follows. Chapter 2 includes a survey of

the literature pertaining to the problem of filament segmentation, and examines the

reasons why existing methods are insufficient. In Chapter 3, we present an evolution-

ary algorithm for matching filaments which establishes a framework for identifying

structured clusters of cells. Chapter 4 demonstrates the results of using our approach

and contrasts the output with those of existing methods. Finally, in Chapter 5 we

draw conclusions from these comparisons and present the success of our method in

the context of its alternatives, before discussing avenues for future improvements and

lines of inquiry.



Chapter 2

Literature Review and Background

2.1 Image processing basics

Digital image processing is a wide and growing field of study. In keeping with the

scope of this work, we will only survey some rudimentary concepts. More details can

be found in [19, 61].

An image I is represented by a two-dimensional array of elements called pixels,

each having an assigned set of values. Image pixels are typically referenced by their

row and column coordinates with the origin in the top left corner; however, it sim-

plifies notation to use the Cartesian coordinate set where each pixel has an x and

y coordinate and the origin is in the bottom left corner. Each pixel contains data

indicating the colour or intensity at that point in the image. In the case of a colour

image, the data may be a triad of red, green, and blue components. In the case of

a grayscale or “intensity” image, each pixel only has a single value which identifies

the intensity or shade of gray. We will be limiting ourselves to grayscale images, in

which case the image can be seen as a three-dimensional surface z = I(x, y), where

each discrete point (pixel) is assigned a height (intensity). We will generally use the

notation I(x, y) to refer to the set of pixel intensities at discrete coordinates x, y.

One of the most fundamental operations for an image is a spatial convolution.

It is especially popular since its complexity can be greatly reduced through use of

the fast Fourier transform (FFT), which is outside the scope of our interest. A

discrete convolution is simply a weighted two-dimensional sum centered on a pixel,

and carried out across all pixels within an image. Formally, writing ? to denote the

convolution operation, the discrete convolution is defined in [19] as

f(x, y) ? g(x, y) =
M−1∑
m=0

N−1∑
n=1

f(m,n) · g(x−m, y − n)

7
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for x = 0, 1, . . . ,M − 1 and y = 0, 1, . . . , N − 1. Usually, one of the functions f(x, y)

is taken to be the intensity map of an image, and the other g(x, y) is designated by

a smaller mask.

Although simple, spatial convolutions form the basis of numerous important im-

age processing methods. A simple 3×3 smoothing mask, or smoothing filter, is given

by

M(x, y) =


1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

 .
Convolving an image with this mask sets each image pixel equal to the average

intensity between itself and its eight immediate neighbours. Like all filter masks,

the size is not limited to 3 × 3, though size is usually chosen so that the mask is

symmetric about the centre pixel. An alternative smoothing mask is given by the

Gaussian filter which is an n× n mask M(x, y) defined by the Gaussian function

M(x, y) = Gσ(x, y) =
1

2πσ2
e

−(x2+y2)

2σ2 . (2.1)

Here, the centre pixel of M(x, y) is taken to have coordinates (0, 0), and the value of

σ controls the standard deviation of the Gaussian around (0, 0). The effect of this

filter is to blend pixel intensities from neighbouring pixels.

Edge detection can also be performed using spatial convolutions. The underlying

idea is to detect pixels with a large gradient, or directional first derivative. Again

treating an image I(x, y) as a surface in three dimensions, the partial derivatives with

respect to x and y are approximated, forming the components of a gradient vector

for each pixel. The one-dimensional gradient magnitude image is then computed

using the magnitude of each pixel’s vector. There are several viable approaches for

approximating gradients. The Sobel approximation uses two masks

My(x, y) =


−1 −2 −1

0 0 0

1 2 1

 , Mx(x, y) =


−1 0 1

−2 0 2

−1 0 1


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to compute the partial derivatives, while the Prewitt approximation uses

My(x, y) =


−1 −1 −1

0 0 0

1 1 1

 , Mx(x, y) =


−1 0 1

−1 0 1

−1 0 1


In either case, the gradient magnitude image is then

|∇I(x, y)| =
√

(Mx(x, y) ? I(x, y))2 + (My(x, y) ? I(x, y))2

where the squaring and square root are performed as pixel-wise operations.

Another approach is to use the partial derivatives of the Gaussian function to

create partial derivative masks. Since smoothing is generally required anyway as a

precursor to reliable edge detection, combining the two operations makes sense. Even

better, the Gaussian and derivative operations are commutative and associative when

taken as convolution operations. This means that taking the partial derivative of the

Gaussian and convolving with the image is equivalent to convolving the Gaussian

with the partial derivative of the image. Writing Ix, Iy to denote the first partial

derivatives of the image I with respect to x and y, we compute the value of

Ix =
∂

∂x
(Gσ(x, y) ? I(x, y))

and take this to be equivalent to computing

Ix =

(
∂

∂x
Gσ(x, y)

)
? I(x, y)

and similarly for Iy.

2.2 Approaches to cell segmentation

There is no single approach to segmenting cells or subcellular structures from micro-

graphs. The approach used depends on factors such as the method of image capture,

the quality of the image, and the type of image feature needing to be identified. In

this section, we summarize several of the more popular methods for cell segmentation

focusing on those of particular relevance to our images, but this is necessarily incom-

plete. For a more thorough treatment of the literature, see the surveys in [49, 38, 44].
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2.2.1 Watershed methods

The watershed method is a standard method in digital image processing for segment-

ing regions of an image based on its intensity profile [19], [61]. Given a greyscale im-

age, pixel intensities are interpreted as height, and the image as a three-dimensional

surface with peaks and valleys corresponding respectively to high and low intensity

pixels. As the name suggests, a watershed algorithm then finds dividing lines between

basins in the image’s topography by considering a flood of water rising slowly over

the surface. Beginning with its lowest points, the water levels are raised throughout

the image. When the water in neighbouring basins touch, this marks a “watershed”

line in the segmentation process.

Conceptually, a dam is built at these points to keep the basins’ water separate

while the water levels continue to rise. The flood proceeds until the entire image is

covered, and the resulting set of connected watershed lines define the image’s segmen-

tation. In practice, this can be achieved by iteratively labelling pixels with intensity

below an increasing threshold. The image is initialized with all pixels unlabelled, and

intensity threshold T set to the minimum pixel intensity of the image. With each

increment of T , all unlabelled pixels with intensity below T are inspected. Those

pixels neighbouring a labelled pixel adopt their neighbour’s label, and those without

a labelled neighbour are assigned a new and unique label. In this way, groups of

labelled pixels spread as the intensity threshold increases, until finally encountering

a differently labelled group and forming a watershed line.

If applied to a reliable gradient image, the watershed algorithm will ideally iden-

tify basins corresponding to low-intensity objects and watershed lines corresponding

to high-intensity edges. However, using this approach directly often leads to over-

segmentation due to image noise, or from leaks between basins caused by partially

missing or low contrast edges [47]. To correct for this, seeds or markers are often

placed in a pre-processing step. These serve as wells indicating the exclusive sources

of flood waters. Instead of regarding all unlabelled pixels with every increment of

the intensity threshold, in this paradigm only pixels neighbouring a labelled pixel

are considered as these are the only ones eligible to be flooded.
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How these markers are designated is the chief variation among many watershed

methods. Markers may be derived from another cell segmentation method, such as

a distance transform [9],[4] or level set approach [56] which determines approximate

cell centres. Other approaches use specific domain knowledge about the cell struc-

tures in the image, as in template matching [12].

2.2.2 Distance transforms

Given a binary image mask which distinguishes between foreground and background,

the distance transform assigns to each foreground pixel its minimum distance to a

background pixel. Any distance metric may be used, although the standard Eu-

clidean distance is most frequently used. Finding the local maxima within an appro-

priately sized neighbourhood will give approximate cell centres [38], which can then

be used as input for methods of refining the cell centres or finding cell contours [4].

Since it is sensitive to indentations in the foreground mask, this can be useful for cell

centre extraction from closely packed or overlapping objects [61].

2.2.3 Gradient flow tracking

The gradient flow tracking model was proposed as an improved approach to defin-

ing external forces for active contour models [63] of cell segmentation. A gradient

vector flow (GVF) field is formed by iteratively minimizing an energy function over

the vector field formed from an image’s directional gradients. The result is a vector

field which matches the gradient vector field where the vector magnitudes are large,

and otherwise diffuses and smooths vectors with small magnitude. This attempts to

correct for noise and other small variations in local intensity. Under the assumption

that an image’s gradient vector field only has large vectors near prominent edges and

these vectors are approximately normal to the path of the edge, the GVF field will

propagate prominent edge vectors through nearby areas of homogeneity.

Although the GVF field was originally intended for finding region boundaries with
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active contours, it can also be used to find cell centres. By modifying the underlying

energy function to model an elastic deformation where the image gradient landscape

is treated as an elastic sheet, the resulting diffused GVF field consists of smoothed

vectors pointing toward the nearest cell centre [34]. Each pixel is then identified with

a sink by tracking the flow of its diffused gradient vector to a terminal point. Pixels

which flow to the same sink are grouped together as belonging to the same cell, and

the sink is an estimate for the cell centre.

GVF flow tracking is reported to work well, particularly in images with tightly

clustered cells, however the iterative construction of the flow field is very expensive

in terms of required memory and computational time. Faster approaches have been

proposed which change the physical model used to calculate the flow field, including

a vector convolution field (VCF) [33] which treats edges as objects exerting gravita-

tional forces proportional to their intensity, and a feature map [13] which abandons

a physical model in favour of propagating “evidence” for edges. This last approach

reports a significant improvement in computational complexity over previous VCF

and GVF methods.

2.2.4 Ellipse detection

There are several viable methods for extracting ellipses from a binary image. As-

suming a robust gradient image with well-defined edges, applying an ellipse detector

can potentially identify cell contours and their enclosed regions. These methods as-

sume the shape of the underlying object closely matches a true ellipse and attempt

to match this directly. Other methods (such as active contours presented in Section

2.2.5) may locate shapes resembling ellipses, but there is no bias toward this shape

in the approach. Two of the more popular methods for direct ellipse fitting are the

Hough transform and the Fitzgibbon least-squares approach, and many approaches

are based on one of these two. Completely alternate methods have also been used

successfully on microscope images, including those motivated by the Mumford-Shah

energy functional [65], and modified active contours [54].
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Fitzgibbon least-squares method

Ellipses fall into the more general category of conic sections, which also include

parabolas and hyperbolas. Any conic section in the Cartesian plane can be expressed

using the implicit quadratic

f(x, y) = ax2 + bxy + cy2 + dx+ ey + f = 0,

where a, b, c, d, e, f ∈ R are the coefficients. Such a conic can be uniquely writ-

ten up to a constant factor as the vector a = [a, b, c, d, e, f ], and this vector can

be said to represent a specific instance of f . This is a general equation for con-

ics, and it represents an ellipse if and only if the discriminant of the representation

disc(f) = disc(a) = b2 − 4ac is negative.

Before Fitzgibbon [17], ellipse fitting required solving a least-squares problem

adapted for general conics and then iteratively searching for a solution with negative

discriminant. Given a set of N data points (xi, yi), 1 ≤ i ≤ N , the algebraic distance

was defined as

D(a) =
N∑
i=1

f(xi, yi)
2

and minimized using least-squares. To avoid the trivial solution a = 0, extra con-

ditions were required and an algorithm which accounted for these conditions was

already known for general conics. Fitzgibbon modified the previously unusable con-

dition

b2 − 4ac < 0 (2.2)

into the equality constraint

4ac− b2 = 1 (2.3)

which remains valid as solution vectors a are only unique up to a constant fac-

tor. That is, any solution a = [a, b, c, d, e, f ] to Equation (2.2) admits the solution

1
disc(a)

· [a, b, c, d, e, f ] to Equation (2.3), and similarly in the other direction. This

allowed the existing non-iterative least-squares algorithm to be used for fitting ex-

clusively against conics which were ellipses.
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The Fitzgibbon method has been used successfully as a component in multi-stage

image processing approaches [4, 36, 26] for cell micrographs, typically taking as input

a processed binary image representing candidate cell contours. As the least-squares

approach requires only location information from data points, no pixel intensity in-

formation is used directly and complementary methods are used to highlight cell

outlines. The Fitzgibbon method was also improved to account for a significant

number of outlier data points and occluded ellipses [11], which are significant con-

cerns for micrographs of tightly packed or overlapping cells.

Hough transform method

The Hough transform was originally proposed as a method for detecting straight

lines, but has since been generalized to potentially arbitrary shapes. Given a set of

data points (xi, yi), the idea of the Hough transform [14] is to find the line y = mx+b

which best fits the given data. This is accomplished by parameterizing the line into

the polar form

r = x cos(θ) + y sin(θ) (2.4)

with θ ∈ [0, π), and then transforming the line into its parameter space. Each in-

stance of the parameter pair (r, θ) specifies a distinct line, and the two-dimensional

space of all such parameter pairs corresponds exactly with the set of all possible lines

in the image space.

An accumulator array is formed by bounding and discretizing the parameter

space, where each cell of the array corresponds to a parameter pair (r, θ) to within

some error tolerance. For each data point (xi, yi), we iterate over one of the dis-

cretized axes and solve Equation (2.4) for the remaining parameter. The accumula-

tor array is incremented in the corresponding cells, with the coordinates indicating

parameters for possible lines to which the point (xi, yi) might belong. Points will

usually cast multiple votes across the accumulator array, depending on how the pa-

rameter space is bounded and discretized. After iterating over all data points, the

accumulator array is anaylzed and the local maxima found. The cell of the global

maximum has received the largest number of votes, and will give the parameters
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(r, θ) for the most prominent line among the given data points.

In the case of straight lines, the accumulator array is two-dimensional and it must

be iterated over in one dimension. For the more complicated case of ellipses, the ac-

cumulator array is five-dimensional and quickly becomes prohibitively expensive to

compute. However, by using geometric properties of an ellipse’s shape, this can be

reduced to a one-dimensional array [62] at the cost of increasing the iteration over

N data points to an iteration over all N2 pairs of data points. This approach was

refined in [10], and made more robust for identifying incomplete ellipses.

Separate improvements were made by changing how points were mapped into

the parameter space in the Randomized Hough Transform (RHT) [64]. Instead of

exhaustively mapping image points into the n-dimensional parameter space, data

points are randomly sampled with uniform probability. The single n-dimensional ac-

cumulator cell corresponding to the solved parameterization is incremented by one,

and any accumulator cells which pass a conservative threshold are blanked and have

all corresponding image points removed from the pool of voting data points. In [24],

the random sampling is replaced with a genetic algorithm (GA) which evolves in-

dividuals consisting of five foreground image pixels, while the issues of voting and

thresholding are also re-cast in the context of a genetic algorithm. This GA approach

was used successfully for segmenting cell in micrographs, often with small clusters of

overlapping cells.

2.2.5 Active contours: snakes

Active contours or “snakes” were proposed [23] as interactive parametric splines with

associated energy functionals which could be iteratively minimized (or maximized)

based on the underlying features of an image. If initialized close to an image feature

by a user, the snake would adjust its contour to match the edges of the feature as

closely as possible. Although the original snake was not, modern snakes are often

closed contours and are used to segment a region of arbitrary shape from the full

image. The term open active contour is used to distinguish the case where there
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are endpoints (see Section 2.3.3), and these are typically used to segment distinct

curvilinear features or disconnected edges.

Active contours are initialized as closed contours in the image, and deformed ac-

cording to an underlying energy field. For instance, using the gradient vectors of an

intensity image will attract the snake to edges with large gradient. This constitutes

the external force on a snake’s deformation, but there are also internal energy forces

which enforce smoothness and continuity constraints on the overall contours. The

total energy E of a snake is the sum Eint + Eext of the internal and external energy

along the curve of the contour, so some balance is required between the two forces

to achieve bounding contours which appropriately match the image feature while

maintaining a desired level of smoothness.

A particular advantage of snakes is their ability to deform actively to account

for small perturbations in the location or formation of an image’s features. In other

words, snakes are suitable for segmenting dynamic image features. A natural appli-

cation is in the segmentation of video frames; once a snake has deformed to match

a feature in the first frame, it is capable of slightly adjusting itself to maintain its

match in the next frame.

Snakes have been used to segment cell contours in images of tightly packed cells

[7] where the edges between cells are reasonably well-defined. In [55, 54], the shape

of the snake contours were restricted to that of a circle or ellipse, and the energy

terms adapted to include the entire covered surface instead of only the edges. This

effectively allowed the snake framework to be used in detecting primitive geometric

shapes, and ellipse detection (see Section 2.2.4) is of particular importance in the

context of cell segmentation.

More complicated morphological topologies can be handled by discretizing the

image space into grid points and using these to represent a snake as a simplicial

complex [39]. In the case of a two-dimensional image, this means connecting each

grid point with its eight neighbours to tessellate the plane with triangles and a snake
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is defined by a subset of these triangles. In this way, changes in contour topology can

be accommodated, such as events where snakes merge or split. In [67], this method

was adapted to simplify computational demands by placing a further restriction on

how the snakes may deform, and this was able to segment images of human arterial

vessels possessing complex contours.

2.2.6 Active contours: level set methods

Level set methods were introduced [42] to solve problems posed by dynamic contour

detection and image segmentation, similar to active contours (see Section 2.2.5). In

fact, active contour and level set methodologies have been explicitly combined, and in

some cases the terms are almost interchangeable. The most salient aspect of level set

methods is that they embed contour representations in a higher-dimensional space.

A summary of the modern formulation of level set methods is given in [41], and we

follow their standard notation.

Given a two-dimensional area Ω with closed boundary contour ∂Ω, an associated

implicit function is a three-dimensional surface φ(x) which satisfies
φ(x) > 0 if x ∈ Ω−

φ(x) < 0 if x ∈ Ω+

φ(x) = 0 if x ∈ ∂Ω

where Ω−,Ω+ denote the interior and exterior of Ω, respectively. In other words,

the zero level set of φ(x) is exactly the closed contour ∂Ω, while φ(x) is positive

within the boundary and negative without. Representing the contour in this higher-

dimensional setting gives access to more powerful methods for effecting topological

changes for dynamic curves. For example, it is a non-trivial problem to compute the

union or intersection of two dynamic contours if specified by snakes (as in Section

2.2.5).

Following the introductory example of [41], a simple analogy of this higher-

dimensional representation is to consider the points ±1 on the real number line R.
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An explicit representation would be to simply write {−1,+1} and have this define

the one-dimensional area [−1,+1], with boundary ∂Ω = {x
∣∣ |x| = 1}. An implicit

representation would be defining φ(x) = −x2 + 1, since this satisfies
φ(x) > 0 if x ∈ (−1, 1)

φ(x) < 0 if x(−∞, 1) ∪ (1,∞)

φ(x) = 0 if |x| = 1.

We could also define φ(x) = −(x3 + 1)(x2 − 1) as the implicit function, since

it too satisfies the above inequalities. The selection of the implicit function is not

explicitly determined by the boundary, but is instead chosen to be as smooth as

possible, avoiding any very large or very small gradients.

One such function is based on the signed distance function. Given a closed bound-

ary ∂Ω, we define

d(x) = min
xI∈∂Ω

(|x− xI |)

to be the signed distance function, which is the distance from any point x to the

closest point lying on the boundary ∂Ω. We then define an implicit function φ(x)

for any closed boundary ∂Ω to be

φ(x) =

−d(x) if x ∈ Ω−

d(x) otherwise

since clearly d(x) = 0 if x lies on the boundary, and it is positive inside the boundary

while being negative outside.

Although this simplifies certain topological operations, deforming the implicit

function of a bounded contour still requires an energy field. This can be defined

as the gradient field of an image, so that the level set contour will be attracted

to strong edges, but there are other possibilities. One popular option involves the

Mumford-Shah energy model, which conceptually splits an image into two regions

with approximate pixel intensities u1, u2. These intensities are given as input, and the

Mumford-Shah problem is to find the boundary which splits the image into two re-

gions using a closed boundary ∂Ω such that the approximate intensity in Ω+ matches
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u1 and the approximate intensity in Ω− matches u2, both as closely as possible.

The Mumford-Shah level set model can be extended to account for more than

two regions and also handle more complex topologies [57], and this has been used to

segment single cells in bright field images in combination with a watershed [56] or

alternative method [6]. Prior knowledge about the features in an image can also be

used through a model-based approach to constrain the deformation of level sets [43].

2.2.7 Notch detection for overlapping cells

Notch detection is a straightforward method used for detecting points of overlap be-

tween two or more cells [4, 26]. Given an image with reliable contours and orientation

information, normal vectors are computed for all edge pixels. Walking along an edge

contour, the angle θ of the normal vector at each pixel is recorded in sequence. The

angles are smoothed to account for noise and allow subtle changes to be ignored,

then all changes in the concavity of the contour above some threshold are recorded

as possible notches. Using information about the centre of each cell, notches can be

paired off where applicable. If the approximate shape of the cells is also known, as

in the case of elliptical cells, then implicit contours can be inferred where occlusion

would otherwise prevent an edge contour being detected.

2.3 Approaches to filament segmentation

Line tracing and curve detection are largely synonymous and refer to the segmenta-

tion of curvilinear paths from an image. In some cases such as filament segmentation,

distinct lines must be individually identified and separated. There are numerous ap-

proaches to solving this problem in both 2D and 3D images [32], but we will focus in

this section on three particular approaches and highlight their potential applicability

to filament segmentation.
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2.3.1 Spline fitting to point clouds

Fitting parametric curves to a set of 2D points is a long-standing and popular prob-

lem in computer vision. It is assumed that the set of points approximates a shape or

curve in the plane, and the problem is to derive a curve which matches the underly-

ing shape. This becomes more difficult when the set of points is unordered [20], as is

the case with points given by pixel coordinates in an image. One approach is to use

an error fitting term to measure how well a potential curve matches the underlying

data, and then optimizing the curve using this measure. A standard error term is

the least-squares model, although there are others [59].

In [37], a Euclidean distance minimum spanning tree (EMST) is used to group

points locally, and a parametric B-spline curve is then initialized at random within

the point cloud. A small set of points is matched by the curve using a least-squares

distance error. The local tangent information of the curve is then used to look past

the curve’s endpoints in a small window, and together with the EMST topology this

is used to select new points to be iteratively fitted by the curve. New points continue

to be added using the tangent window and EMST until no remaining un-matched

points are detected. The resulting B-spline curve is refined slightly, and then output

as a matching curve to the shape of the point cloud.

Unfortunately, matching multiple distinct shapes within a single point cloud is

not explicitly handled. There is also the strong assumption of homogeneity in the

point cloud; if the points are not uniformly distributed across the underlying shape,

or if there are numerous outliers, the algorithm’s assumptions are violated.

2.3.2 Tracing and detection of curvilinear features

In [52, 53], Steger describes a low-level approach to identifying curvilinear structures

which extracts lines with subpixel accuracy and simultaneously estimates their width.

It was introduced as a method for identifying roads in aerial photographs [31], and

has also been used in identifying coronal loops in solar photographs [15, 3]. An

input gray level intensity image I(x, y) is modeled as a three-dimensional continuous
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surface z(x, y). Ideally, the perpendicular cross-section of a bright line in z(x, y)

is expected to resemble an inverted parabola, with smooth, steep sides and a local

maximum where the first derivative vanishes, marking the middle point of the line.

In practice, a bright line cross-section may also fit either of the one-dimensional

profiles

fb(u) =

h if |u| ≤ w

0 if |u| > w

fa(u) =


0 if u < −w

h1 if |u| ≤ w

h2 if u > w

where h2 < h1, and the parameter u is centered on the line and varies in both perpen-

dicular directions. These are the bar profile and asymmetric bar profile, respectively.

With an inverted parabola model, looking at cross sections f(u) should lead to

the ridge of a line being identified as the point u where f ′(u) = 0 and f ′′(u) is large.

There are no similar conditions for the discontinuous bar profiles; however, con-

volving the image with Gaussian kernels smooths the responses sufficiently for these

conditions on f ′(u), f ′′(u) to hold. The two-dimensional Gaussian kernel Gσ(x, y)

defined in Equation (2.1) and its partial derivatives are approximated for an image

by using discrete values of x and y. Since the Gaussian and differential operators are

commutative and associative as convolution operations, we can convolve the above

partial derivatives with the Gaussian kernel, and use this as an approximation for

the first and second order spatial derivatives of the smoothed image.

Calculating these derivatives for each pixel, useful information can be obtained

regarding the location of possible lines. Following the line profile model, we want

pixels which have a second directional derivative with large magnitude and a first di-

rectional derivative which vanishes along that vector. Writing the partial derivatives

of I as Ix, Iy, Ixy, Ixx, Iyy, the direction possessing the second directional derivative of

maximum absolute value can be found by considering the eigenvectors of the Hessian
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matrix

H =

(
Ixx Ixy

Ixy Iyy

)
.

The eigenvalue e of largest absolute value and its eigenvector ve correspond to the

magnitude and direction of the second directional derivative, which points in the di-

rection normal to the candidate line. A minimum threshold may be used to discard

pixels without a sufficiently large second directional derivative.

A line pixel must also have a vanishing first derivative in the direction of ve.

Since the image is discrete, a Taylor polynomial approximation of the image surface

z(x, y) is used to estimate the first derivative with subpixel accuracy. If the first

directional derivative vanishes along ve within the same pixel, then it is marked as

a line pixel.

The result is a binary mask L(x, y) which indicates line pixels, where each line has

only a single response. That is, a line in the original image will have a correspond-

ing sequence of line pixels in the binary mask approximating the spine or “ridge”

of the curve, and the binary line will be only one pixel wide. This is attractive for

any post-processing steps, as multi-pixel responses would require thinning or other

corrective operations to be invoked. In particular, this aids in the process of linking

line pixels to group them together as belonging to the same curve.

Linking curve pixels

The linking process considers in sequence each non-zero pixel of L(x, y). Let n(x, y) =

ve and n⊥(x, y) respectively denote the normal and tangent directions of the line to

be detected. At each pixel, the neighbouring 8-connected region is restricted to three

pixels which are approximately in the direction of ±n⊥. From these, the neighbour

which minimizes the sum d + β is chosen to continue the line, where d ∈ (0,
√

8)

is the Euclidean distance between the subpixel locations of the line in the adjacent

pixels, and β ∈ [0, π
2
] is the difference between the angles representing n⊥ in each

pixel. New pixels continue to be added as long as they exceed a saliency threshold,
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which is measured in the magnitude of the vector n.

The linking process was improved by Raghupathy [45, 46] by augmenting the

purely local approach of the Steger algorithm with global information. The two im-

portant issues specifically addressed were the behaviour of curve following at junc-

tions or intersections, and following of faint curves. Junctions are handled by al-

lowing the linking algorithm to look ahead farther than one pixel at a time in the

approximate direction of n⊥ when no suitable matches are found in the immediate

neighbourhood. To correct for noise, the average orientation

n⊥av =
1

M

M∑
i=0

n⊥pk−i

of the line tangents is computed over the current pixel pk and the previous M pixels.

A distant pixel pk+1 is linked with the current pixel pk if it minimizes the angle

difference between n⊥pk+1
and n⊥av.

Curves which fade to termination or end then reappear are handled by application

of the Radon transform. When the usual linking algorithm signals the termination

of a line, the Radon transform is applied to the image to detect any faint lines. The

inner product is then computed between the current line and those detected by the

Radon transform, and line segments having an endpoint matching that of the ter-

minated curve and maximizing the value of their inner product are selected as faint

continuations of the line.

If this fails to detect a fading line segment and the current line does terminate, the

possibility still exists of the line re-emerging. This is detected by a combination of

the previous two methods. The same Radon transform result is used, but the search

considers distant endpoints instead of only the terminating line’s current endpoint.

Distant endpoints are computed by following the average orientation n⊥av from the

terminating line’s endpoint, and searching in this neighbourhood for line segments

from the Radon transform which admit a large inner product. To reduce erroneous

line detection, re-emergent line segments are also required to match against the mag-

nitude of their normal vectors.
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Scale selection

Selecting the correct value for σ directly impacts the ability of the algorithm to de-

tect lines; larger values are needed for wider lines, but values which are too large will

tend to remove critical details. Steger requires that σ ≥
√

3w
6

, and implies that σ ≤ w
2

should also hold. The selection of this parameter involves analyzing the image in

scale space, which is the result of smoothing the image using Gσ with varying scale

σ. In [60], the authors tackle the issue of scale selection in a restricted case of line

tracing. With the assumption that a given line passes through a fixed row or column

in the image, a scale-space search is only necessary over this set of entries. A line

sweep then proceeds in the directions tangent to the image curve, and if necessary

adjusts the value of σ in small increments between successive rows/columns.

This has the benefit of allowing for robust detection of lines with varying width,

and significantly decreasing the overhead for determining a single appropriate σ. Un-

fortunately, the approach is only valid when the line is guaranteed to pass through

a known row or column of the image space.

2.3.3 Open active contours: snakes

Open active contours (OAC) or “snakes” were proposed [23] as parametric splines

with associated energy functionals which could be iteratively minimized (or maxi-

mized) based on the underlying features of an image. Active contours are tradition-

ally defined using a closed contour (see Section 2.2.5) which has no endpoints, and

deflates or inflates in a natural way to minimize its energy. To distinguish from these,

open active contours are those which have specified endpoints. These may be fixed

in space or allowed to deform along with the snake, subject to some restrictions [50].

A snake energy functional is composed of both internal and external forces. In-

ternal forces are responsible for explicitly enforcing the piecewise continuity of the

curve, encouraging a smaller size, and discouraging curvature. The external forces
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guide the snake toward a desired image feature, allowing it to overwhelm the influ-

ence of the internal forces where necessary. That is, an image feature which is both

large and curved should be matched with an equivalently large and curved snake,

but one that is no larger or more curved than it need be. An important deviation

from using closed contours, the snake external forces also encourage stretching the

contour’s endpoints. Given an intensity image and an appropriate starting position,

a snake will be drawn toward the nearest bright (or dark) object in the image and

match its full contour.

We focus on one particular implementation of OACs, however there are numer-

ous other approaches in the machine vision literature, surveyed in [50]. The recent

formulation in [51, 35] is of most interest, as it is intended specifically for tracking

filaments in micrographs and has the added benefit of being implemented in the

freely available software package JFilament 1. Here the total energy E of an OAC

is written as E = Eint +Eext where Eint is the internal and Eext the external energy.

These are defined along the parametric curve r(s) = (x(s), y(s)), s ∈ [0, L] which

defines the OAC. For each value of s ∈ [0, L], the function r(s) evaluates to a coor-

dinate pair in an underlying image space.

The internal energy is computed as

Eint =

∫ L

0

(
α(s) ‖rs(s)‖2 + β(s) ‖rss(s)‖2) ds (2.5)

where

rs(s) =
dr

ds
=

(
d(x(s))

ds
,
d(y(s))

ds

)
rss(s) =

d2r

ds2
=

(
d2(x(s))

ds2
,
d2(y(s))

ds2

)

are the first and second order spatial derivatives, respectively. As we are minimizing

the expression for Eint, smaller values for these derivatives in the image space are

1JFilament software is available as an ImageJ plugin at
http://athena.physics.lehigh.edu/jfilament/
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encouraged along the parametric curve. Thus, the term ‖rs(s)‖2 serves to restrict

the stretching and the term ‖rss(s)‖2 restricts the bending of the snake, while α(s)

and β(s) weight their relative importance.

The external energy is computed as

Eext = k ·
∫ L

0

(Eimg(r(s)) + kstr · Estr(r(s))) ds (2.6)

where Eimg denotes energy contributed by features in the underlying image, Estr

encourages stretching, kstr is a constant which balances stretching against image en-

ergy, and k is a constant which allows balancing Eext against Eint in the total energy

equation. The energy term for image features is defined as Eimg = Gσ ? I, where

Gσ is the Gaussian smoothing kernel with standard deviation σ, I is the underlying

image, and ? denotes the convolution operation. This is chosen because the gradient

∇Gσ ? I tends to point toward the middle of filaments, which the energy minimiza-

tion process exploits. The energy term Eimg(r(s)) = Gσ ? I(r(s)) is then intensity of

the convolved image under the curve r(s).

The energy term for stretching Estr is based on a re-scaling of the intensity image,

but only defined on I(r(s)) where s = 0, L, which are the endpoints of the snake.

The force

F (r(s)) =
I(r(s))− Ī
If − Ib

defines the magnitude, where Ī is the image’s mean pixel intensity, If is the mean

foreground intensity, and Ib is the mean background intensity. These are constant

values, and must be estimated before beginning the snake deformation. This defines

the magnitude of the stretching factors, while the direction is tangent to the curve

up to a sign, pointing away from the filament, so

∇Estr(r(s)) =


−r(s)
‖r(s)‖ · F (r(s)) if s = 0

r(s)
‖r(s)‖ · F (r(s)) if s = 1

0 otherwise.
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As the underlying image is fundamentally discrete, the value of E can be approx-

imated by sampling the pixel intensities along the curve r(s) and taking a finite sum.

Given N unique pixels si = (xi, yi) under the curve r(s), we can write

Ẽint =
N∑
i=1

(
α(si) ‖rs(si)‖2 + β(si) ‖rss(si)‖2)

Ẽext = k ·
N∑
i=1

(Eimg(r(si)) + kstr · Estr(r(si))) ,

and therefore

E ≈ Ẽint + Ẽext.

From this, the spatial derivatives can be computed to guide the deformation of the

snake.

This formulation of OAC snakes was used successfully to identify and track fil-

aments in fluorescence micrographs [35, 51], and is amenable to time-lapse image

analysis because of the incremental deformation model of snakes. As each frame is

expected to have only slight differences from the previous frame, an existing snake

can naturally adapt to the new information. However, the single-frame process was

only applied to sparse images with few total filaments, there are limited methods for

handling overlapping or parallel filaments, and there are no obvious adaptations for

bright field images. These snakes use splines only implicitly, by enforcing continuity

and differential constraints directly through their internal energy functions. Even

though not specified in the general approach, the available JFilament implementa-

tion uses very short segments by default, effectively assigning one control point for

every pixel lying on the spline. This reduces the snake representation to a pixel

sequence which does not take advantage of the inherent nature of spline based inter-

polation.



Chapter 3

An Evolutionary Spline Matching Algorithm

We propose a new approach for segmenting filaments in micrograph images which

combines information about both filaments and cells to iteratively construct an out-

line of the filaments with an evolutionary strategy (ES). Finding an outline implicitly

defines a midpoint line for the filament and all its cells, and cell segmentation from

these cell centre markers is then left as a task for existing methods. Control points

for a Bessel-Overhauser spline are added in sequence along a filament, where each

new spline segment is scored using an objective function. Using a simple version of

the covariance matrix adaptation evolution strategy (CMA-ES), a candidate spline

segment is evolved and appended to the filament’s spline.

3.1 Motivation and lead-up to solution

An obvious approach for segmenting images of filamentous cyanobacteria is to rely

on existing methods (see Section 2.2) for segmenting cells in bright field micrographs.

Methods which are able to segment tightly clustered cells should be of particular ap-

plicability in the context of crowded filament cells. However, for our purposes there

are several potential drawbacks to this approach.

Methods for the segmentation of clustered cells are best used on images with

clearly defined cell contours. This will generally be true for images captured using

fluorescence microscopy [34, 8, 58] although bright field images with consistently

strong edges may also be suitable [7, 30]. In our image sets edges are often faint or

missing entirely, which means any purely edge-based approach will undersegment the

image. Figures 3.1 and 3.2 show examples of cells with partially and fully missing

edges. Individual cells with missing or irregular edges have been reliably extracted

[6, 56] from bright field images; however, such edge-free approaches have not yet

28
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been used on images of multiple or tightly clustered cells.

(a) (b)

(c) (d)

Figure 3.1: Four views of a cell with a partially missing edge: (a) original input
image, (b) negativized image after illumination correction, (c) gradient magnitude
image, (d) false colour of gradient magnitude image.

There is no accepted method for reliably segmenting cells in bright field im-

ages with poor contrast, non-homogeneous intensity levels between foreground and

background, and missing edges. Further, such a method would still not be able to

communicate any topological information in the case of filamentous organisms. Not

only would we like to know the location of each cell’s membrane and approximate

centre, but also its parent filament, neighbouring cells, and orientation within its fila-

ment. Additionally, the overall path, orientation, and length of each filament should

be identified within the image. This information is not available purely through cell

segmentation.

The alternative approach is then to consider segmenting filaments first. With re-

liable filament information, the relative positions and orientations of cells are strictly

limited within the image space. This constrains any search to a very narrow window,
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(a) (b)

(c) (d)

Figure 3.2: Four views of touching cells with missing edge: (a) negativized image after
illumination correction, (b) gradient magnitude image, (c) false colour of negativized
image in (a), (d) false colour of gradient magnitude image in (b).

greatly reducing the impact of missing and inconsistent cell features, and possibly

making existing cell segmentation methods viable.

With proper thresholding, the Steger-Raghupathy algorithm (see Section 2.3.2)

is reasonably robust and theoretically attractive. The differential geometric ap-

proach has been used successfully in segmenting micrographs [48], and the Steger-

Raghupathy code has been applied to processing astronomical images [15, 3]. How-

ever, several factors make it unsuitable for direct application to the problem of seg-

menting filaments in bright field micrographs.

The contrast between filaments and the image background is generally low, so

that the overall intensity of a filament is unreliable. In Figure 3.3, a typical “coffee

bean” intensity profile is shown for several cells. Each cell has internal regions of

intensity comparable to the image background. As the Steger-Raghupathy approach

relies on the relative intensity to determine the proper width of each line, this kind of

intensity pattern will mean incorrect reporting of line ridges and widths. In spite of

this, the approach does give reasonable approximations to filament ridges for some

isolated filaments after sufficient smoothing. Intersections between nearly orthogonal
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filaments are handled adequately, though a robust linking method would be required.

However, intersections between filaments at sharp angles, non-intersections between

parallel touching filaments, and groups of multiple tightly clustered filaments are all

instances in which the Steger-Raghupathy method fails.

(a) (b)

Figure 3.3: Two views of cells showing low contrast between cell centres and back-
ground: (a) negativized original image, (b) false colour of negativized image.

More accurately, it is the input images which fail the assumptions of the Steger-

Raghupathy algorithm. The filaments in our images have inconsistent intensities and

appear to have inconsistent widths. Where two filaments lie in parallel, the smooth-

ing factor blurs together the intensities of neighbouring cells so that the reported line

ridge is actually closer to the edge dividing the two filaments. This is an expected

and even correct response from the algorithm, but it is not the response we desire.

This effect is compounded in areas of multiple clustered filaments, and it is not clear

whether Steger’s pixel responses could be correctly linked in these cases, even if they

could be accurately determined.

Open active contours which conform to the ridge of a line (see Section 2.3.3) suf-

fer from similar problems, and may be even more sensitive to the uneven intensities

within a filament. In particular, cells with low intensity interiors will disrupt the

progress of a snake as it deforms along a filament. If instead of ridges the snake

is designed to be attracted to the large gradients of edges, then faded and missing
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edges as well as the bright field halos still prevent open active contours from being

an attractive approach. Snakes are not inherently able to move past difficult areas of

low or uneven intensity, since by definition they seek the path of least resistance. As

they rely on strictly local information from the image, they cannot explore distant

options when extending along a filament which might require overlooking small areas

of difficulty.

Open snakes also lack any method for distinguishing between filaments that

present equally viable paths of deformation, as in the case of parallel or tightly

clustered filaments, and filaments intersecting at a sharp angle. Whether a filament

should be followed in one direction or another can depend on non-local indicators or

varying local features that may or may not be present. Part of this problem lies in

the smoothing pre-processing step which minimizes the impact of noise and allows

for a local search. In our image sets, the granularity of certain features like edges

between cells on parallel touching filaments, is small enough that any effective noise-

removal will also degrade the features. In these regions, the blurring effect will render

any search over the local region unreliable. In Figure 3.4, the effect of smoothing

is presented on a section of image with touching cells. Even with a conservative

smoothing parameter of σ = 1.0, some details begin to disappear. More aggressive

smoothing renders the borders between cells completely unrecognizable. For detect-

ing these filaments, the Steger algorithm advocates using a smoothing parameter in

the approximate range 3.75 ≤ σ ≤ 6.5. Snakes also perform very poorly with larger

values of σ, yet without this level of smoothing they invariably become stuck in local

energy minima due to intensity inconsistencies in the interior of cells. Results for

both approaches are presented in more detail in Section 4.1.

These problems suggest a third alternative which will form the core of our ap-

proach. Rather than segmenting cells and combing them to segment filaments, or

segmenting filaments and splitting them to segment cells, we will simultaneously

combine image features for both filaments and cells to generate filament outlines.

These will be used in a complementary way, and accommodate weak or incomplete
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(a) (b) (c) (d)

Figure 3.4: Visualizing the effects of smoothing on tightly packed cells. Three fila-
ments are seen lying in close proximity, with two lying in parallel and touching. In
order left to right, (a) the original image is displayed, followed by smoothing results
with increasing values of (b) σ = 1.0, (c) σ = 2.0, and (d) σ = 3.0.

features in the underlying image. This moves away from the exclusively local ap-

proaches of snakes and line tracing, and incorporates more global information into

the objective. Especially in areas where features are indistinguishable on the level of

individual cells, global information about the parent filaments can be used to infer

a correct segmentation. Splines are used to represent segmented filaments, which

implicitly provide constraints on continuity and rigidity of the representation, rather

than needing to provide this balance explicitly through an internal energy function.

To avoid becoming stuck on local optima we employ an evolutionary strategy rather

than a gradient descent method, to effect the growth and deformation of filament

outlines. This has the added advantage of allowing for dynamic distance between

spline control points. Rather than specifying a constant length, the distance between

successive control points is permitted to grow or shrink according to the complexity

of the image features.

3.2 Evolving a single filament outline

The core function of our algorithm is to locate a ridge which traces the midpoint line

of an entire filament, as well as parallel edge lines tracing the contour of the filament.

A bright field image and the approximate width w of the filament cells are taken as

input, and a starting point for a filament can be provided manually or initialized

automatically. The output for each filament is a single spline curve which indicates
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the median ridge of the filament. Two parallel edge splines are implicitly defined at

distance w
2

from the ridge spline, and these indicate the exterior filament edges.

The placement of a new control point is decided based on maximizing the objec-

tive function

O(S) = Eedge + Eridge + Elength (3.1)

which is the sum of three components that reward the spline for highlighting edges

of cells, the ridge of a filament, and overall length. The edge and ridge scores are

both calculated by using processed versions of the input image. The length score

depends only on the spline, and will be discussed in Section 3.2.3. The edge image

Ie and ridge image Ir can be any images which highlight cell edges and filament

ridges respectively, and different pre-processing methods may be more appropriate

for different images. Our original image set contains dark filaments on a bright back-

ground. This is reversed for ease of visualization by taking the image negative.

The optimization of this score is handled by an evolutionary strategy. A new

control point is initialized at a short distance in the direction of the approximate

end point tangent of the previous segment. The placement of the control point is

then explored stochastically, and scored by examining the spline segments which re-

sult. The best options are combined at each generation, and gradually the process

converges to a solution. We have chosen an evolutionary strategy with an available

implementation which automatically scales its step size between generations.

3.2.1 Image pre-processing

The illumination levels of our image sets were observed to be very uneven, so rudi-

mentary illumination correction was applied. The morphological top-hat operator

computes the difference between an input grayscale image and its morphological

opening, which serves as an estimate for the illumination level in a local area. A

structural element is required which is larger than the details of interest in the im-

age; we used a disc element of radius 15. Figure 3.5 demonstrates the progress,
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moving from an input image with dark features on a bright background, to a nega-

tive image with more even illumination.

(a) (b)

(c) (d)

Figure 3.5: Visualizing the illumination correction process. The original image (a) is
first converted to its negative (b), then the morphological opening is computed (c).
The difference between the negative image and its opening are the result (d).

Each edge and ridge image is generated by using this illumination corrected im-

age as input. We present several options for computing the edge and ridge images

here, and choose the best result for our image set.

A naive method for generating the edge image Ie is to convolve the input image
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I with the Gaussian derivative and take the magnitude of the gradient, as in

Ie = ‖∇Gσ ? I(x, y)‖ .

This will likely give unsatisfactory results, as bright field images can have very large

intensity changes within individual cells as well as at their edges, producing consid-

erable noise in a gradient magnitude image. The Steger line tracing algorithm can

be used with small smoothing parameter to extract prominent curvilinear edges from

a gradient magnitude image, creating a binary mask outlining the filament edges.

An alternative to the Gaussian derivative method is to use a phase congruency edge

detector [28, 29], which is notably robust against poor image contrast and varying

levels of illumination. Feature detection based on phase congruency seeks to high-

light areas of an image where the Fourier waveforms are in phase 1. As a simple

analogy, Figure 3.6 contains several sine waves of varying amplitudes, wavelengths,

and phase offsets which are completely in phase at several points. At these loca-

tions, the sum of the sine waves experiences a significant change, which would likely

be perceived as a salient edge in an associated image [27]. The response from a phase

congruency edge detector is always in the range [0, 1] so no further scaling is required.

Based on our image set, the Gaussian derivative method on its own gave only

adequate results for generating useful edge data. The large gradients within most

cells resulted in significant noise in the edge data. By contrast, the phase congruency

edge detector produced much cleaner images with very little noise. In both cases,

uneven edges were still apparent in areas where a filament had high contrast on one

side and low contrast on the other. This is unattractive as we would ideally like all

true edges to be weighted evenly.

The Steger approach discussed in Section 2.3.2 can be used without pixel linking

to highlight edges that are part of a curvilinear structure. This algorithm can be

run on the phase congruency edge image, using suitable parameters for locating lines

one to two pixels wide. The result is a binary mask of all prominent curvilinear

edges. If the phase congruency image’s pixel intensities are mapped to real values

1The implementation used for the phase congruency edge detector is available as a software
download from http://www.csse.uwa.edu.au/˜pk/



37

Figure 3.6: Sine waves of various amplitudes, wavelengths, and phase offsets (black)
with their sum superimposed (red). There are several points with maximum phase
congruence, where all the waves are in phase with each other. The black waves
correspond to the first four terms of the Fourier series

∑N
n=0

sin(x·(2n+1))
2n+1

.

in [0, 1], then taking the pixel-wise maximum between this and the Steger mask will

give an image with all prominent edges assigned the maximum intensity. A visual

comparison of these edge-detection methods is presented in Figure 3.7. To decrease

the resulting sharp slopes in preparation for an optimization process, the last step

is to smooth the image with a Gaussian filter using σ = 1.0, and take the pixel-wise

maximum between the two.

Generating the ridge image Ir is done by convolving the input image with vari-

ous sized elliptical structural elements that are rotated through twelve evenly spaced

orientations, as depicted in Figure 3.8. The maximum response across these orien-

tations is taken to be the final result. This aims to highlight bright areas of the

image which contain elliptical features such as cells. It is not expected that this will

reliably detect many of the cells, but rather that it will indicate approximate regions



38

(a) (b)

(c) (d)

Figure 3.7: Comparison of edge data images: (a) gradient magnitude using Gaussian
derivative, (b) phase congruency with noise removal, (c) pixel-wise maximum of
image (b) and Steger response of image (b), (d) pixel-wise maximum of image (c)
and image (c) smoothed with Gaussian σ = 1.0.

Figure 3.8: All twelve orientations of elliptical structural elements used for generating
ridge data. Each ellipse is no more than 25 pixels wide in its largest dimension.

of interest for each filament. Where the cells are more clearly defined, the result will

be moderate responses near the edges of cells, gradually building to a local maximum

near the cells’ middle points. Taken across the entire filament, these local maxima
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will form a median ridge through the centre of the filament. A sample of the ridge

data for one input image is given in Figure 3.9.

(a) (b)

Figure 3.9: Visualization of ridge data image: (a) input image, (b) ridge data dis-
played in false colour.

3.2.2 Spline model for tracing filaments

The Bessel-Overhauser model is used to represent filament splines, and these are cre-

ated by iteratively placing control points in the image. A spline is therefore defined

entirely by its sequence of control points: writing pi = (xi, yi) to indicate the i-th

control point having coordinates (xi, yi), a spline S is the ordered set of n control

points {p1,p2, . . . ,pn}. The i-th spline segment lies between control points pi,pi+1,

and is given by a parameterized curve ri(u) = (x(u), y(u)) with u ∈ [ui, ui+1] over

this segment. The values of ui, ui+1 are the left and right parameter knots of the i-th

segment. Written without a superscript, the curve r(u) is the result of joining each

of the segment curves ri(u).

Bessel-Overhauser splines are C1-continuous cubic splines which interpolate their

control points. They allow using chord length parameterization to account for un-

evenly spaced control points. For each segment, a distance metric evaluates the
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distance between the segment’s end points, and this is used to parameterize the cor-

responding curve ri(u). Thus, for the i-th spline segment connecting control points

pi and pi+1, the parameter knots satisfy

ui+1 = ui + ‖pi+1 − pi‖.

The difference pi+1 − pi is a vector, and the operator ‖ · ‖ denotes its magnitude.

We are using the Euclidean distance, so this is equivalent to

‖pi+1 − pi‖ =
√

(xi+1 − xi)2 + (yi+1 − yi)2.

Each control point pi has a single associated tangent vector ti satisfying the

C1 continuity constraint between its two neighbouring curves ri−1(u), ri(u). These

tangents are computed by first assigning each segment a half tangent vector

hi =
pi+1 − pi
ui+1 − ui

of unit length, and then letting

ti =
(ui+1 − ui) · hi−1 + (ui − ui−1) · hi

ui+1 − ui−1

(3.2)

be the tangent vector for control point pi.

This definition requires a control point to have two neighbouring control points,

which raises a difficulty with defining tangents for the end points of a spline. There

are two solutions; one is to use the end control points solely to determine tangent in-

formation, so spline segments are only computed between control points p2, . . . ,pn−1.

The other solution is to estimate the missing half tangent by setting it equal to the ex-

isting half tangent. Since we want our spline to interpolate all of its control points,

we employ the latter strategy and define t1 = h1 for the first control point, and

tn = hn−1 for the final control point.

A filament’s spline is initialized as n control points, and the placement of subse-

quent control points is optimized by an evolutionary strategy. For now, we assume

that n > 1. The result of running the ES is a ridge spline which traces the middle

ridge of a single filament, and is defined by a set of evolved control points. This
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is accompanied by two curves parallel to the ridge spline at a distance of w
2

each,

where w is again the approximate width of a filament cell. These two edge splines are

defined implicitly from the ridge spline and trace an approximation of the filament’s

edges. Since the ridge spline is the only explicitly defined tracing element, we will

sometimes simply refer to it as the spline for a filament.

3.2.3 Evolutionary strategy: objective function

A full filament segmentation is represented by an ordered sequence of control points.

These explicitly define a ridge spline for the filament, which in turn implicitly defines

the two edge splines. However, only a subset of these control points is used in evolv-

ing the position of a new control point, under the assumption that well-established

control points do not require any further improvements.

The search space is defined by individuals consisting of an N -dimensional vector

containing the x and y coordinates of N
2

control points spanning N
2
−1 spline segments.

For a spline S with n existing control points, when adding the (n + 1)-th control

point the dimension of the search space is

N = 2 ·min(n+ 1, 3).

This means that in evolving a new control point, we calculate its score based on the

new spline segment and up to two previous segments, rather than scoring across the

entire spline. Additionally, older control points are assigned much smaller step sizes

to further limit the impact of higher dimensionality.

The scoring of individuals is based on the objective function in Equation (3.1).

Edge splines and ridge splines are scored separately by using the images Ie and Ir

generated in the pre-processing step (Section 3.2.1), and the length score is indepen-

dent of the image. The ridge score for the (n+ 1)-th control point is determined by

sampling M points uj lying under the curve segments ri(u) for i = N
2
− 1, . . . , n and
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taking the generalized mean of their pixel intensities

Eridge =

(
1

M
·
M∑
j=1

Ir(r
i(uj))

q

) 1
q

.

In practice, the points along the spline are interpolated to pixel coordinates using the

nearest neighbour approach; however, other methods should produce similar results.

The edge score for the (n+1)-th control point is determined in a similar manner,

by sampling M points uj lying under the two curves running parallel to ri(u) at

a distance h = w
2

of half the estimated width of cells in the image. As before,

i = N
2
− 1, . . . , n and we take the generalized mean of the pixel intensities at these

points, then sum the two to form the edge score

Eedge =

(
1

M
·
M∑
j=1

Ie(r
i(uj) + h · riuu(uj))q

) 1
q

+

(
1

M
·
M∑
j=1

Ie(r
i(uj)− h · riuu(uj))q

) 1
q

.

Here, ruu is the second derivative of the curve r with respect to the variable u, and

points along the spline are again interpolated using the nearest neighbour method.

In both Eedge and Eridge, the value of q in the generalized mean is a tunable

parameter. When q = 1 the generalized mean reduces to the arithmetic mean

1

M

M∑
j=1

aj,

and the limit of the sum as q → 0 is the geometric mean(
M∏
j=1

aj

) 1
M

.

If we limit q to real values in the range [0, 1], then smaller values will increase the

sensitivity to low-intensity pixels when computing the scores. As we typically want

edge and ridge scores to be sensitive to pixels with near-zero intensity, our default

value is q = 0.5.

The length score for the i-th spline segment is determined separately from any

image data, and is intended to encourage control points to be as sparsely distributed
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as possible. A serious drawback of open snakes as implemented in JFilament is

that energy is only evaluated at individual control points. This is a reasonable

approximation if the control points are placed at each pixel along the curve, but

then this negates the advantages of using a spline representation. If the control

points are more widely spaced, the energy approximation terms become poor, and

are much more sensitive to local noise. By encouraging spline segments to be as long

as possible, our spline approach moves toward a more compact representation while

still computing a score over the entire spline segment. The length score is computed

as a function of the Euclidean distance between a new control point pn+1 and the

existing control point pn−1

‖pn+1 − pn−1‖ =
√

(xn+1 − xn−1)2 + (yn+1 − yn−1)2.

By using this distance, we favour splines which increase the overall length of the

spline, rather than those which only increase the latest segment. This also allows for

a more relaxed constraint on short segments, as very short segments will be generally

permitted as required in regions of high curvature, so long as they are neighboured

by a longer segment. Finally, measuring distance from the second last control point

discourages splines which wrap immediately back on themselves.

We would like to scale the reward value so that we can control how quickly length

increases are rewarded, and shift the reward value in order to penalize distances below

a threshold. Through a combination of both, we also implicitly control the point of

maximum slope in the reward function, so that distances near this point will be

most encouraged to increase. To do so, the Euclidean distance is used as input to

the sigmoid function

Elength =
2

π
· arctan

(
1

b
(‖pn+1 − pn−1‖ − a)

)
.

Here, the inverse tangent function is used; however, any sigmoid function scaled to

the range [−1, 1] would also be sufficient. The values of a and b are parameters

used to change the impact of the length score on the overall value of the objective

function. The value of a ∈ R shifts the function to control the x-intercept, and the

value of b ∈ (0,∞) scales the function to determine its steepness. Interpreted in the
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context of spline segments, if ‖pn+1 − pn−1‖ < a then the control point pn+1 will

have a negative length score, and a length score of 0 if ‖pn+1 − pn−1‖ = a. The

value of b determines the value of ‖pn+1 − pn−1‖ + a which will give a score of 0.5,

so smaller values of b will increase the overall steepness. The effects of parameters a

and b are shown in Figure 3.10.

(a) (b)

Figure 3.10: Comparison of arctangent sigmoid functions, re-scaled to have range
[−1, 1]. The function f(x) = 2

π
· arctan (x) is in blue with a = 0, b = 1. In image (a),

the function g(x) = 2
π
· arctan

(
1
5

(x)
)

is in red with a = 0, b = 5. In image (b), the
function g(x) = 2

π
· arctan ((x− 5)) is in red with a = 5, b = 1.

3.2.4 Evolutionary strategy: parameters

The covariance matrix adaptation evolution strategy 2 (CMA-ES) is a method for

stochastically solving real-valued optimization problems [22, 21]. The CMA-ES algo-

rithm works by combining parent individuals with a normally distributed mutation

to form children, and at each generation it updates a covariance matrix C. This af-

fects the shape of the normal distribution, favouring areas of the search space which

will tend to lead to an optimal solution. This adaptation is handled transparently by

the CMA-ES algorithm, and does not require any further tuning beyond providing

2The implementation of CMA-ES used is available as a software download from
http://www.lri.fr/˜hansen/



45

initial parameters.

In our instance, individuals are N -dimensional vectors corresponding to x- and y-

coordinates for a set of N
2

spline control points. The CMA-ES algorithm is initialized

with an N -dimensional vector m0, and from this λ children are generated for the

first generation by sampling from a normal distribution σ ·N (0, C) with mean 0 and

using covariance matrix C. This distribution is also scaled by the scaling factor σ

which is a global step size parameter. The covariance matrix can also be written as

a matrix eigendecomposition

C = BD2BT

where B is an orthonormal matrix satisfying BBT = I, and D is a diagonal ma-

trix with diagonal entries corresponding to the square roots of the eigenvalues. In

practical terms, diag(D) together with σ specifies the step size for elements of each

individual; specifically, for one of the N
2

control points.

The λ generated children form a single generation, and from these the best µ

parents are chosen to generate the next vector mean m. Assuming the xi are written

in order of descending objective function values, so that x1 is the fittest individual

and xλ the least fit, then the vector mean m(g) for generation (g) is the weighted

mean

m(g) =

µ∑
i=1

wix
(g)
i

where the weights wi are assigned by the CMA-ES algorithm based on the ordered

ranking of individuals xi. The covariance matrix C and global step size σ are also

updated for each generation, so that the general update rule for creating the next

generation’s λ individuals is

x
(g+1)
k = m(g) + σ(g)N

(
0, C(g)

)
for k = 1, . . . , λ.

To initialize the CMA-ES, the half tangent hn−1 of the last spline segment is used

as an approximation for the direction of the spline and a new control point is created
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as

pn+1 = pn +
w · hn−1

‖hn−1‖
with magnitude w equal to the estimated cell width. Step size parameters are ini-

tialized as σ = 0.6 and the diagonal of matrix D is diag(D) = [0.01, 0.25, 1]. This

gives a step size (standard deviation) of 1 ·σ = 0.6 for the newest control point pn+1,

0.15 for the penultimate control point pn, and 0.006 for pn−1. The control point pn−2

is used to evaluate the (n − 2)-th spline segment, but its position is considered to

be fixed. If only two control points are involved in the evolution process, then D is

trimmed to remove the corresponding value.

Initializing the step size matrix this way gives the most freedom to the newest

control point pn+1, as it is assumed this will require the most movement to opti-

mize its score. The penultimate control point pn is still allowed some leeway, giving

the ES the opportunity to improve this placement using the updated information

provided by attempting to place pn+1. The previous control point pn−1 is given an

even smaller window in which to change, with the assumption that it has already

been improved at least once. The CMA-ES will automatically change these step

sizes as the algorithm runs by updating its covariance matrix, though it is expected

that control point pn−1 will not have its value change significantly. Established con-

trol points pi, i ≤ (n−2), are taken as fixed and not involved in the evolution process.
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Algorithm 1 Single filament segmentation algorithm

1: procedure SegmentFilament(Ir, Ie,p1,p2)

2: stop := false

3: n := 2

4: while !stop do

5: pn+1 = pn + w·(pn−pn−1)
‖pn−pn−1‖

6: s = min(n+ 1, 3)

7: [pn, . . . ,pn+1−s] = CMA-ES([pn, . . . ,pn+1−s])

8: n := n+ 1

9: stop = CheckStopConditions([pn, . . . ,p1])

10: end while

11: end procedure



Chapter 4

Results and Comparisons

Following the single filament segmentation algorithm, filament traces were mostly

successful for manually selected starting points. To ensure that all filaments were

segmented, each filament was assigned three control points by hand in close prox-

imity, and from there the filament spline was evolved in both directions. Filament

contours were universally followed closely, even in areas of very high curvature, and

areas of image feature ambiguity were typically handled well. The number and spac-

ing of control points appeared reasonable, with more control points being placed in

areas of uncertainty or high curvature, and fewer in areas of relative homogeneity.

As with any stochastic process, the results may change between runs of the algorithm.

Full evaluation of this algorithm would ideally be carried out over a large data

set, but we are presently limited by images made available to us. These image sets

are single frames drawn from two time-lapse videos showing the growth and move-

ment of the cyanobacteria. Each subsequent frame tends to be more cluttered and

more difficult to segment than the last, so we initially only consider the two starting

frames. These frames still exhibit a wide variety of filament orientations and feature

characteristics, so they are suitable candidates for an initial evaluation of the algo-

rithm.

Two exemplary results are given here in Figure 4.1, while the full set of results is

presented in Appendix A. Each segment was allowed to evolve for 125 generations

and was scored using the objective function detailed in Section 3.2.3. It can be ob-

served (see Figures 4.2, 4.3) that the edge and ridge splines conform to the contours

of the filaments even when certain feature information is missing.
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Overall, although performing far better than either alternative, the problem ar-

eas for our algorithm are still those which made the Steger and OAC approaches

unusable. Parallel touching filaments present two viable paths for a segmentation

algorithm to follow, and inconsistent image features can confuse the search for an

optimal control point. The performance of the algorithm is then dependent on the

quality of the underlying image features. Missing edges and uneven intensity can be

accommodated, but only up to a point. In extremely cluttered images with multiple

overlapping, intersecting, and touching filaments, the performance of the algorithm

may be understandably poor.

For the rest of this chapter, we first give a context for these results by presenting

equivalent results for both the OAC and Steger methods. We then discuss the suc-

cesses and failures of our own approach.

4.1 Presentation of alternatives

Implementations of both the Steger and open snake methods were used to process

the simplest of our two primary sample images. As expected, their results were

not sufficient for the task of identifying and segmenting individual filaments among

clusters of multiple touching or overlapping filaments. We present results from both

methods here.

4.1.1 Steger curvilinear feature detection

To test the Steger method, we modified the implementation authored by Steger

available through the GRASP project1. We ignored the labels assigned by pixel

linking, and instead treated the Steger output as a binary mask indicating line ridges

in the image. The resulting masks typically contained numerous false lines in regions

of very low intensity; however, these could easily be thresholded away, so we focused

instead on the lines given for regions containing filaments. Smoothing plays a crucial

1GRASP project details and GFPL code available online from
http://www.lsc-group.phys.uwm.edu/˜ballen/grasp-distribution/
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(a)

(b)

Figure 4.1: Two identified filaments with ridge spline (yellow) and edge splines (ma-
genta). In image (a), the matched filament is tightly clustered with several other
filaments, and is missing significant portions of edge data. In image (b), the matched
filament is relatively isolated but very long, almost spanning the width of the image.
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Figure 4.2: A filament spline (yellow) with matching edge splines (magenta), all
specified by a set of control points (red). The edge splines do not match the fila-
ment edges at all points, particularly near the large bend in the filament, but the
segmentation is still successful.

Figure 4.3: Two separate areas on a filament with patchy or missing edge information.
In spite of this, the edge splines (magenta) still give a reasonable approximation to
the filament contours.

role in the Steger algorithm, so the value of the smoothing parameter σ was varied

to observe the range of possible output. Since the filament width is approximately

w = 13 by manual inspection, the range of the smoothing parameter should be

3.75 ≈
√

3w

6
≤ σ ≤ w

2
≈ 6.5.

The results of applying the Steger algorithm this way are given in Figure 4.4. In

each case, the Steger mask is shown in red overlaid on the original (non-negative)

image. Small smoothing values of σ permit the Steger approach to detect at least one

edge of a filament with reasonable accuracy, but the resulting line does not approx-

imate the filament’s median. These images are also filled with smaller, insignificant

lines which are detected between neighbouring cells. Larger smoothing values of σ

remove these extraneous details and smooth the isolated filaments enough that the

response very closely approximates the filaments’ median. However, this amount of

smoothing blurs the distinction between parallel touching filaments and results in
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(a) (b)

(c) (d)

Figure 4.4: Results of running Steger algorithm (red) overlaid on original non-
negativized image for easier viewing, where all images have had extraneous lines
removed using thresholding. In image (a) with σ = 3.75, numerous orthogonal lines
were detected between neighbouring cells on the filament, suggesting this smoothing
parameter is too small. In image (b) with σ = 4.75, fewer such lines were detected,
but the median lines are not very close to the middle of the filaments. In image
(c) with σ = 5.75, orthogonal lines between neighbouring cells were rarely detected,
and the median line position is improved. Parallel touching filaments are incorrectly
treated as one line, and intersecting filaments have large gaps in their median lines.
In image (d) with σ = 6.25, lines for parallel touching filaments were still incorrectly
detected, and otherwise very few differences are visible from using σ = 5.75 in image
(c).

these being treated as a single line. Intersections and orthogonal overlaps are gener-

ally handled well, although a robust pixel linking algorithm would still be required
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to separate the lines for each filament.

4.1.2 Snake method

To test the viability of open snakes, we used the JFilament software referenced in

Section 2.3.3. As with the Steger approach, smoothing is an important feature of

the JFilament implementation; however, it has a different effect. Small smoothing

parameters apparently have little impact on the algorithm’s ability to segment entire

filaments. Small areas of noise are reduced or removed, but others still remain as

impediments to full segmentation. Moderately increasing the smoothing parameter

results in erratic behaviour of the snakes, making segmentation impossible.

Figure 4.5: Two images showing open snakes stuck in local minima. Both snakes
have minimized their energy functionals as much as possible in their local regions,
and this has resulted in an incomplete segmentation. Both images also show the
snakes attaching to edges of the filament rather than the median ridge lines, as well
as tracking dividing lines between cells which leads to switching filament sides.

The software is interactive and requires the user to input starting points for the

segmentation process to start. In our tests, we always chose starting points lying

on or very near the median line of filaments. JFilament snakes also require several

rounds of deformation, controlled by the user. When two subsequent deformations

produce no noticeable differences in the snake, this is taken to be the converged upon
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solution.

(a)

(b) (c)

Figure 4.6: Progression of a more successful snake through several deformations.
The first deformation (a) gives an open snake tracking one edge of the filament very
closely, with a single switch between the filament sides near the top of the image.
In images (b) and (c) respectively, the next two deformations increase the length of
the snake along the filament’s edge. The final snake in image (c) only identifies the
edge along approximately half of the filament’s length.

The results of attempting to track various filaments using open snakes are given

in Figures 4.5, 4.6, and 4.7. The snakes are shown in bold red overlaid on the neg-

ative image used as input. No smoothing was used on these images, as no different
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(a) (b)

(c) (d)

Figure 4.7: Two images (a) and (c) showing the starting points given by the user
alongside the resulting open snakes in images (b) and (d), respectively. Despite both
sets of starting points being located very close to their filaments’ median lines, both
snakes are attracted to the filament edges. Further, both snakes fail to track the full
filament, and both switch between the two filament edges multiple times.

behaviour was observed with small smoothing parameter σ = 1.0. With smooth-

ing parameter σ > 2.0, the convergence speed of most snakes was greatly reduced,

their average length decreased, and many simply shrank from their starting points

to smaller segments or even a single point. The two most salient defects in the

non-smoothed results are the open snakes’ inability to trace the entire length of a

filament, and their attraction to the filament edges instead of the filament ridges.

Local energy minima seemed to eventually prevent each snake from segmenting the
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full filament, and smoothing was unable to correct for this.

4.2 Discussion of results

Both the Steger and OAC approaches were unable to accurately track the median

ridge lines in our sample image, particularly in the case of overlapping and parallel

touching filaments. By contrast, our method is able to distinguish between neigh-

bouring filaments by searching beyond local optima and overlooking temporary dis-

ruptions in image features, such as edges. Full results are presented in Appendix A.

The most salient problem with the results is the capacity for over-segmentation.

Several filaments were matched very well by their spline outlines, but one or more

control points were added at the ends of the splines, beyond what was needed for a

correct segmentation. This is to be expected: the very nature of the segmentation

algorithm is to be biased toward encouraging exploration beyond a small number of

poor scoring segments. Without this tendency, many of the more difficult regions

would be impossible to correctly segment. The trade-off then is that stopping con-

ditions are difficult to accurately and safely parameterize without compromising the

algorithm’s ability to segment accurately in difficult areas.

In all of the above images, several stopping criteria are used to indicate when a

filament spline is finished. These are all handled at a level above the evolutionary

strategy, which locates optimal control points without interpreting their context.

The filament tracing process is halted if any of the following criteria are met:

(1) If the last control point was placed in a region with neighbouring pixels in the

ridge image Ir all below a fixed threshold

(2) If the last control point was placed within a fixed number of pixels from the edge

of the image I

(3) If the last control point receives an edge score or ridge score which is less than

a fixed percentage of a previous control point
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(4) If the last control point was placed such that the resulting ridge spline passes

through the previous segment’s region

Stopping condition (1) is triggered by a filament spline stepping past the end of a

filament and into an empty region of the image which can be confidently classified as

a background region. The threshold used must be sufficiently strict to prevent false

positives from occurring in regions of the foreground with relatively low intensities

in Ir. Stopping condition (2) is triggered by a filament spline reaching the end of

a filament which continues out of the current frame entirely. Since no more infor-

mation is available outside the image, we stop the segmentation process. Stopping

condition (3) occurs when a spline uses two spline segments to cover an area with

very low score. This may indicate that the spline has reached the end of the filament

and, pushed onward by the penalizing length score, has jumped to a second filament.

The percentage drop-off required to trigger this condition must be sufficiently low

to ensure it still allows the algorithm to explore areas with weak image features.

Stopping condition (4) is triggered by a filament spline reaching the end of a fila-

ment and, rather than stepping off into an empty region with near-zero ridge and

edge pixels, looping back onto the same filament. This is naturally discouraged by

the continuity requirements of the spline representation and by our definition of the

length score (see Section 3.2.3). However, when faced with the end of a filament the

penalty for moving back along the filament may be outweighed by the penalty for

moving forward into an empty region. This behaviour can be recognized easily, and

the offending control point omitted from the final segmentation result.

These stopping conditions on their own are not enough to catch all stopping sce-

narios. Indeed, it may only be after one or more segments that it becomes clear that

the segmentation should have terminated at some previous control point. Rather

than compromising the efficiency of the algorithm with more ad hoc stopping crite-

ria, we propose instead to use a simple pruning stage to eliminate extraneous spline

segments, and otherwise rely on a human operator to trim splines by selecting which

control points should serve as end points.

The automatic pruning process first checks if a filament spline is stopped under
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(a)

(b)

Figure 4.8: A simplified visualization of the objective function in the search space.
The 3D surface (b) is the score of a new control point as a function of angle and
distance relative to the last control point. The spline and control points used are
also pictured (a).

condition (4) then the last segment is automatically removed, and no further pruning

is required. In the case of stopping condition (2), there are also no extraneous spline

segments needing to be removed. However, if stopping condition (1) is met, there

may be one or more segments at the ends of the filament which are superfluous.
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(a) (b)

Figure 4.9: The same objective function as Figure 4.8 as seen from the sides. Control
point score is displayed: (a) as a function of pixel distance, (b) as a function of angle
relative to previous control point.

To detect these, we look at the ridge and edge scores for each individual segment,

ignoring the contribution from neighbouring spline segments. This uses the same un-

derlying data as the objective function outlined in Section 3.2.3, but we are now only

interested in scoring one segment at a time, and we ignore the length score entirely.

Stepping backwards through the spline segments, those first few which have an in-

dividual segment score below a fixed threshold are discarded, and the first segment

exceeding the threshold becomes the new terminating segment for the filament spline.

In some cases, no stopping conditions are ever met because a filament spline hops

from one filament to another within a single spline segment. This is an unavoid-

able consequence of having an increased tolerance for missing edges and inconsistent

intensity. A simple solution is to present the segmentation to an end user, who

can easily identify a pruning point for splines that segment more than one filament.

One alternative is to use more global information about the segmentation of other

splines in the image. If we can consider two alternative segmentations of a single

area and choose the one with higher segment scores, this would give a method for

exhaustively identifying the “best possible” filament segmentations throughout the

image. For the segmentation results given in Appendix A, any splines which hopped

between two filaments had extraneous control points removed by a human operator,

but were otherwise left unchanged.
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The search space for optimizing new control points is 4- or 6-dimensional, as there

are three control points, each with two degrees of freedom. It is understandably diffi-

cult to visualize the shape the objective function takes on within this space; however,

we can approximate its appearance with a 2-dimensional slice of the objective func-

tion. In Figures 4.8 and 4.9, the evolution process of a single filament is halted near

an area of some ambiguity. The usual approach at this stage is for the algorithm

to initialize a new control point and vary its position along with the position of the

two previous control points, searching for an improving score. Instead, these surface

plots were generated by fixing the previous control points and only allowing the new

control point to vary in its position. The offset is measured in relative angle θ (in

radians) and relative distance r (in pixels) from the previous control point . There is

obviously a global maximum lying approximately 100 pixels away, with several local

maxima elsewhere on the surface. There are also faint ridges in the surface lying

perpendicular with the θ-axis, showing the rise and fall of a new control point’s score

as it is moved away in a fixed direction.
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Conclusions and Directions for Future Work

Our goal was to create a fully automatic system for the segmentation and identifi-

cation of filamentous cyanobacteria in bright field micrographs. As demonstrated,

existing methods are either unable to perform robust segmentation in bright field

images, or fail to reliably track filaments in cluttered images, or both. By contrast,

our proposed method is able to use information from a bright field image in a com-

plementary way that allows for missing or incomplete image features. Using a spline

representation allows for implicit constraints on continuity and gives a compact data

structure for storing the segmentation results. Using an evolutionary strategy allows

us to break free from local optima in the search space, while also allowing for a

dynamic length of spline segments. Our proposed method is the first step toward a

fully automatic system, but it still requires the intervention of a human operator to

process its output.

The resulting filament splines can be observed to very accurately trace the me-

dian line of their associated filament, in some cases even changing orientation for

very slight curves between cells. The edge splines, which are constructed implicitly

and mirror the path of the filament spline, also track the filament edges accurately.

Since the distance between edge splines and their mirrored ridge spline is a matter

of user input, the estimated cell width parameter is clearly a critical component for

reliable results.

While our method is robust against missing edges and apparent gaps in filaments,

these strengths become liabilities in the context of a global segmentation problem.

Although able to appropriately handle intersecting filaments and filaments in paral-

lel, there remains the issue of appropriate stopping conditions which signal that no

further spline segments should be added to a filament spline. If the filament runs
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to the edge of the image or ends in an uncrowded area, then it is a simple matter

of checking for a sudden drop-off in spline score in a single step. Things are more

complicated with filaments that terminate in a ‘T-shaped’ collision with another fil-

ament, or in an area with other nearby filaments. In these cases, the gap between

filaments is indistinguishable from the gaps in features which normally occur within

a filament. These situations can be adequately handled by a human operator when

segmenting one filament at a time, but the ultimate goal is to have a fully automated

system that operates with a minimum of user input. To correctly identify meaning-

ful stopping criteria, we then need to apply the filament tracing approach at a more

global level.

5.1 Future work

Stopping conditions are the most pressing concern, and perhaps the most straight-

forward to resolve. Since we cannot automatically distinguish accurate stopping

conditions within a single filament, the next stage is to compare information globally

across all filaments in an image. Spline representations for multiple filaments can

be maintained at the same time, where a new spline segment will be added to only

one filament at a time. When two filament splines overlap, we must make a decision

on which spline is a better match. Looking at the segments near where the two

filament splines initially crossed, the relative spline segment scores can be compared

and the spline with a better score will be taken to be correct. The losing spline will

be truncated to the control point before the spline intersection, all of the winning

spline’s pixels will be temporarily set to zero, and the losing spline will be allowed

to attempt evolving again.

In segmenting a single filament, we might rely on user input to initialize the first

set of control points to serve as a root for evolving the spline representation. In a

global setting, this is no longer an option. We will therefore require a method for

automatically generating starting control points. A minimum of two control points

lying near the middle of a filament are required in order to designate both position

and local orientation. The control points need not be separated by any significant
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distance, yet there is no minimum distance required between the control points. The

ridge image generated in Section 3.2.1 serves as a reasonable starting point. Dividing

the image into smaller regions and then finding points of local maxima gives a single

starting control point. To find a second, we look at pixels lying at a fixed small

distance and take the global maximum from the circle’s perimeter.

Another natural extension is to use the filament segmentation results to permit

individual cell segmentation, especially in highly cluttered images. Having a median

ridge spline for a filament designates a very narrow window where cell centres can

appear, and the edge splines limit the position of cell membranes. It may be possible

to modify traditional cell segmentation methods to use this as a starting point to

improve their performance in bright field images with numerous cells.

Finally, we should investigate embedding this approach in the framework of time-

lapse image analysis. If we assume that the first frame of a video can be reliably

segmented and each filament assigned an accurate spline representation, then how

would these splines be adjusted to accommodate sequential frames with slight off-

sets in the filament positions and orientations? Work has been done on registering

micrographs from time-lapse imagery [58, 67, 51, 2], and this literature should be

investigated for usable results. An even more interesting question is to ask: if we

assume that no single frame of a video can be completely reliably segmented, can we

combine mutual information between neighbouring frames to infer a total segmenta-

tion? This kind of result would have immediate applications in time-lapse imaging

microscopy.



Appendix A

Figures of Segmented Filaments

Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7, and A.8 all contain individual segmentation

results from a single image. All filaments in this image were successfully segmented.

Figures A.9, A.10, A.11, and A.12 contain selected filaments from a second sample

image with much more crowded filaments. In the second image, only a selection of

filaments were attempted. For reference, both original images are given in Figure 1.1.

Control points for each filament were manually initialized and the full spline

evolved autonomously. Where necessary and in accordance with the stopping con-

ditions described in Section 4.2, splines were automatically or manually trimmed by

removing extraneous control points.

Figure A.1: Filament 1-1, correct segmentation with 22 control points total.
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Figure A.2: Filament 1-2, correct segmentation with 17 control points total.

Figure A.3: Filament 1-3, correct segmentation with 15 control points total.
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Figure A.4: Filament 1-4, correct segmentation with 5 control points total.

Figure A.5: Filament 1-5, correct segmentation with 19 control points total.
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Figure A.6: Filament 1-6, correct segmentation with 16 control points total.

Figure A.7: Filament 1-7, correct segmentation with 10 control points total.
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Figure A.8: Filament 1-8, correct segmentation with 11 control points total.

Figure A.9: Filament 2-1, correct segmentation with 15 control points total.
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Figure A.10: Filament 2-2, correct segmentation with 17 control points total.

Figure A.11: Filament 2-3, correct segmentation with 22 control points total.
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Figure A.12: Filament 2-4, incorrect segmentation with 22 control points total.
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